Requirement of Homeobox Gene STIMPY/WOX9 for Arabidopsis Meristem Growth and Maintenance

نویسندگان

  • Xuelin Wu
  • Tsegaye Dabi
  • Detlef Weigel
چکیده

Most organs of flowering plants develop postembryonically from groups of pluripotent cells called meristems [1]. The shoot apical meristem (SAM) is specified by two complementary pathways [2-4]. SHOOT MERISTEMLESS (STM; [5]) defines the entire SAM region [6]. WUSCHEL (WUS), on the other hand, functions in a more restricted set of cells to promote stem-cell fate and is regulated by the CLAVATA genes in a negative feedback loop [7-10]. In contrast, little is known about how the growth of the SAM, which increases in size during vegetative development [11], is regulated. We have characterized STIMPY (STIP; also called WOX9 [12]), a homeobox gene required for the growth of the vegetative SAM, in part by positively regulating WUS expression. In addition, STIP is required in several other aerial organs and the root. What sets STIP apart from STM and WUS is that stip mutants can be fully rescued by stimulating the entry into the cell cycle with sucrose. Therefore, STIP is likely to act in all these tissues by maintaining cell division and preventing premature differentiation. Taken together, our findings suggest that STIP identifies a new genetic pathway integrating developmental signals with cell-cycle control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings.

The establishment of the primary meristems through proliferation after germination is essential for plant post-embryonic development. Cytokinins have long been considered a key regulator of plant cell division. Here we show that cytokinins are essential for early seedling development of Arabidopsis. Loss of cytokinin perception leads to a complete failure of meristem establishment and growth ar...

متن کامل

Regulation of CLV3 expression by two homeobox genes in Arabidopsis.

The ability of meristems to continuously produce new organs depends on the activity of their stem cell populations, which are located at the meristem tip. In Arabidopsis, the size of the stem cell domain is regulated by two antagonistic activities. The WUS (WUSCHEL) gene, encoding a homeodomain protein, promotes the formation and maintenance of stem cells. These stem cells express CLV3 (CLAVATA...

متن کامل

Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development

In Arabidopsis floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)-FD complex and the flower meristem identity gene LEAFY. The floral specification activity of FT is dependent upon two related BELL1-like homeobox (BLH) genes PENNYWISE (PNY) and POUND-FOOLISH (PNF) which are required for floral evocation. PNY and ...

متن کامل

The Gibberellin Pathway Mediates KNOTTED1-Type Homeobox Function in Plants with Different Body Plans

BACKGROUND The shoot apical meristem (SAM) is an indeterminate structure that gives rise to the aerial parts of higher plants. Leaves arise from the differentiation of cells at the flanks of the SAM. Current evidence suggests that the precise regulation of KNOTTED1-like homeobox (KNOX) transcription factors is central to the acquisition of leaf versus meristem identity in a wide spectrum of pla...

متن کامل

Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components

In Arabidopsis thaliana, besides several key transcription factors and chromatin modifiers, phytohormones auxin and cytokinin play pivotal role in shoot and root meristem maintenance, and lateral root (LR) development. Sirtinol, a chemical inhibitor of Sir2 proteins, is known to promote some auxin induced phenotypes in Arabidopsis. However, its effect on plant stem cell maintenance or organ for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005